- Accounting
- Aerospace Engineering
- Anatomy
- Anthropology
- Arts & Humanities
- Astronomy
- Biology
- Business
- Chemistry
- Civil Engineering
- Computer Science
- Communications
- Economics
- Electrical Engineering
- English
- Finance
- Geography
- Geology
- Health Science
- History
- Industrial Engineering
- Information Systems
- Law
- Linguistics
- Management
- Marketing
- Material Science
- Mathematics
- Mechanical Engineering
- Medicine
- Nursing
- Philosophy
- Physics
- Political Science
- Psychology
- Religion
- Sociology
- Statistics

HomeStudy GuidesPhysics

Menu

The Nature of Science and Physics

Kinematics

Introduction to One-Dimensional KinematicsDisplacementVectors, Scalars, and Coordinate SystemsTime, Velocity, and SpeedVideo: One-Dimensional KinematicsAccelerationMotion Equations for Constant Acceleration in One DimensionProblem-Solving Basics for One-Dimensional KinematicsFalling ObjectsGraphical Analysis of One-Dimensional Motion

Two-Dimensional Kinematics

Dynamics: Force and Newton's Laws of Motion

Introduction to Dynamics: Newton's Laws of MotionDevelopment of Force ConceptNewton's First Law of Motion: InertiaNewton's Second Law of Motion: Concept of a SystemNewton's Third Law of Motion: Symmetry in ForcesVideo: Newton's LawsNormal, Tension, and Other Examples of ForcesProblem-Solving StrategiesFurther Applications of Newton's Laws of MotionExtended Topic: The Four Basic Forces—An Introduction

Further Applications of Newton's Laws: Friction, Drag, and Elasticity

Uniform Circular Motion and Gravitation

Introduction to Uniform Circular Motion and GravitationRotation Angle and Angular VelocityCentripetal AccelerationCentripetal ForceFictitious Forces and Non-inertial Frames: The Coriolis ForceNewton's Universal Law of GravitationVideo: GravitationSatellites and Kepler's Laws: An Argument for Simplicity

Work, Energy, and Energy Resources

Introduction to Work, Energy, and Energy ResourcesWork: The Scientific DefinitionKinetic Energy and the Work-Energy TheoremGravitational Potential EnergyVideo: Potential and Kinetic EnergyConservative Forces and Potential EnergyNonconservative ForcesConservation of EnergyPowerWork, Energy, and Power in HumansWorld Energy Use

Linear Momentum and Collisions

Rotational Motion and Angular Momentum

Introduction to Rotational Motion and Angular MomentumAngular AccelerationKinematics of Rotational MotionVideo: Rotational MotionDynamics of Rotational Motion: Rotational InertiaRotational Kinetic Energy: Work and Energy RevisitedAngular Momentum and Its ConservationVideo: Angular MomentumCollisions of Extended Bodies in Two DimensionsGyroscopic Effects: Vector Aspects of Angular Momentum

Statics and Torque

Fluid Statics

Introduction to Fluid StaticsWhat Is a Fluid?DensityPressureVariation of Pressure with Depth in a FluidPascal's PrincipleGauge Pressure, Absolute Pressure, and Pressure MeasurementArchimedes' PrincipleVideo: BuoyancyCohesion and Adhesion in Liquids: Surface Tension and Capillary ActionPressures in the Body

Fluid Dynamics and Its Biological and Medical Applications

Introduction to Fluid Dynamics and Biological and Medical ApplicationsFlow Rate and Its Relation to VelocityBernoulli's EquationVideo: Fluid FlowThe Most General Applications of Bernoulli's EquationViscosity and Laminar Flow; Poiseuille's LawThe Onset of TurbulenceMotion of an Object in a Viscous FluidMolecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

Temperature, Kinetic Theory, and the Gas Laws

Heat and Heat Transfer Methods

Thermodynamics

Introduction to ThermodynamicsThe First Law of ThermodynamicsThe First Law of Thermodynamics and Some Simple ProcessesIntroduction to the Second Law of Thermodynamics: Heat Engines and Their EfficiencyCarnot's Perfect Heat Engine: The Second Law of Thermodynamics RestatedApplications of Thermodynamics: Heat Pumps and RefrigeratorsEntropy and the Second Law of Thermodynamics: Disorder and the Unavailability of EnergyStatistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

Oscillatory Motion and Waves

Introduction to Oscillatory Motion and WavesHooke's Law: Stress and Strain RevisitedPeriod and Frequency in OscillationsSimple Harmonic Motion: A Special Periodic MotionVideo: Harmonic MotionThe Simple PendulumEnergy and the Simple Harmonic OscillatorUniform Circular Motion and Simple Harmonic MotionDamped Harmonic MotionForced Oscillations and ResonanceWavesSuperposition and InterferenceEnergy in Waves: Intensity

Physics of Hearing

- Define pressure.
- State Pascal’s principle.
- Understand applications of Pascal’s principle.
- Derive relationships between forces in a hydraulic system.

A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of its container.

${P}_{1}=\frac{{F}_{1}}{{A}_{1}}\\$

, as defined by $P=\frac{F}{A}\\$

. According to Pascal’s principle, this pressure is transmitted undiminished throughout the fluid and to all walls of the container. Thus, a pressure ${P}_{2}=\frac{{F}_{2}}{{A}_{2}}\\$

, we see that $\frac{{F}_{1}}{{A}_{1}}=\frac{{F}_{2}}{{A}_{2}}\\$

. This equation relates the ratios of force to area in any hydraulic system, providing the pistons are at the same vertical height and that friction in the system is negligible. Hydraulic systems can increase or decrease the force applied to them. To make the force larger, the pressure is applied to a larger area. For example, if a 100-N force is applied to the left cylinder in Figure 1 and the right one has an area five times greater, then the force out is 500 N. Hydraulic systems are analogous to simple levers, but they have the advantage that pressure can be sent through tortuously curved lines to several places at once.
Consider the automobile hydraulic system shown in Figure 2.

A force of 100 N is applied to the brake pedal, which acts on the cylinder—called the master—through a lever. A force of 500 N is exerted on the master cylinder. (The reader can verify that the force is 500 N using techniques of statics from Applications of Statics, Including Problem-Solving Strategies.) Pressure created in the master cylinder is transmitted to four so-called slave cylinders. The master cylinder has a diameter of 0.500 cm, and each slave cylinder has a diameter of 2.50 cm. Calculate the force*F*_{2} created at each of the slave cylinders.

**Strategy**

We are given the force *F*_{1} that is applied to the master cylinder. The cross-sectional areas *A*_{1} and *A*_{2} can be calculated from their given diameters. Then *F*_{2}. Manipulate this algebraically to get *F*_{2} on one side and substitute known values:

**Solution**

Pascal’s principle applied to hydraulic systems is given by

**Discussion**

This value is the force exerted by each of the four slave cylinders. Note that we can add as many slave cylinders as we wish. If each has a 2.50-cm diameter, each will exert 1.25 × 10^{4} N.

A force of 100 N is applied to the brake pedal, which acts on the cylinder—called the master—through a lever. A force of 500 N is exerted on the master cylinder. (The reader can verify that the force is 500 N using techniques of statics from Applications of Statics, Including Problem-Solving Strategies.) Pressure created in the master cylinder is transmitted to four so-called slave cylinders. The master cylinder has a diameter of 0.500 cm, and each slave cylinder has a diameter of 2.50 cm. Calculate the force

$\frac{{F}_{1}}{{A}_{1}}=\frac{{F}_{2}}{{A}_{2}}\\$

can be used to find the force $\frac{{F}_{1}}{{A}_{1}}=\frac{{F}_{2}}{{A}_{2}}\\$

:${F}_{2}=\frac{{A}_{2}}{{A}_{1}}{F}_{1}=\frac{{\mathrm{{\pi r}}_{2}}^{2}}{{\mathrm{{\pi r}}_{1}}^{2}}{F}_{1}=\frac{{\left(1.25 \text{ cm}\right)}^{2}}{{\left(0.250 \text{ cm}\right)}^{2}}\times \text{500 N}=1\text{.}\text{25}\times {\text{10}}^{4}\text{N}\\$

.
- Pressure is force per unit area.
- A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of its container.
- A hydraulic system is an enclosed fluid system used to exert forces.

1. Suppose the master cylinder in a hydraulic system is at a greater height than the slave cylinder. Explain how this will affect the force produced at the slave cylinder.

1. How much pressure is transmitted in the hydraulic system considered in Example 1? Express your answer in pascals and in atmospheres.

2. What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resting on the slave cylinder? The master cylinder has a 2.00-cm diameter and the slave has a 24.0-cm diameter.

3. A crass host pours the remnants of several bottles of wine into a jug after a party. He then inserts a cork with a 2.00-cm diameter into the bottle, placing it in direct contact with the wine. He is amazed when he pounds the cork into place and the bottom of the jug (with a 14.0-cm diameter) breaks away. Calculate the extra force exerted against the bottom if he pounded the cork with a 120-N force.

4. A certain hydraulic system is designed to exert a force 100 times as large as the one put into it. (a) What must be the ratio of the area of the slave cylinder to the area of the master cylinder? (b) What must be the ratio of their diameters? (c) By what factor is the distance through which the output force moves reduced relative to the distance through which the input force moves? Assume no losses to friction.

(5. a) Verify that work input equals work output for a hydraulic system assuming no losses to friction. Do this by showing that the distance the output force moves is reduced by the same factor that the output force is increased. Assume the volume of the fluid is constant. (b) What effect would friction within the fluid and between components in the system have on the output force? How would this depend on whether or not the fluid is moving?

- Pascal’s Principle:
- a change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of its container

3. 5.76 × 10

5. (a)

$V={d}_{\text{i}}{A}_{\text{i}}={d}_{\text{o}}{A}_{\text{o}}\Rightarrow {d}_{\text{o}}={d}_{\text{i}}\left(\frac{{A}_{\text{i}}}{{A}_{\text{o}}}\right)\\$

.
Now, using equation:

Finally,

In other words, the work output equals the work input.

(b) If the system is not moving, friction would not play a role. With friction, we know there are losses, so that

$\frac{{F}_{1}}{{A}_{1}}=\frac{{F}_{2}}{{A}_{2}}\Rightarrow {F}_{\text{o}}={F}_{\text{i}}\left(\frac{{A}_{\text{o}}}{{A}_{\text{i}}}\right)\\$

.${W}_{\text{o}}={F}_{\text{o}}{d}_{\text{o}}=\left(\frac{{F}_{\text{i}}{A}_{\text{o}}}{{A}_{\text{i}}}\right)\left(\frac{{d}_{\text{i}}{A}_{\text{i}}}{{A}_{\text{o}}}\right)={F}_{\text{i}}{d}_{\text{i}}={W}_{\text{i}}\\$

.In other words, the work output equals the work input.

(b) If the system is not moving, friction would not play a role. With friction, we know there are losses, so that

${W}_{\text{out}}={W}_{\text{in}}-{W}_{\text{f}}\\$

; therefore, the work output is less than the work input. In other words, with friction, you need to push harder on the input piston than was calculated for the nonfriction case.