- Accounting
- Aerospace Engineering
- Anatomy
- Anthropology
- Arts & Humanities
- Astronomy
- Biology
- Business
- Chemistry
- Civil Engineering
- Computer Science
- Communications
- Economics
- Electrical Engineering
- English
- Finance
- Geography
- Geology
- Health Science
- History
- Industrial Engineering
- Information Systems
- Law
- Linguistics
- Management
- Marketing
- Material Science
- Mathematics
- Mechanical Engineering
- Medicine
- Nursing
- Philosophy
- Physics
- Political Science
- Psychology
- Religion
- Sociology
- Statistics

HomeStudy GuidesPhysics

Menu

The Nature of Science and Physics

Kinematics

Introduction to One-Dimensional KinematicsDisplacementVectors, Scalars, and Coordinate SystemsTime, Velocity, and SpeedVideo: One-Dimensional KinematicsAccelerationMotion Equations for Constant Acceleration in One DimensionProblem-Solving Basics for One-Dimensional KinematicsFalling ObjectsGraphical Analysis of One-Dimensional Motion

Two-Dimensional Kinematics

Dynamics: Force and Newton's Laws of Motion

Introduction to Dynamics: Newton's Laws of MotionDevelopment of Force ConceptNewton's First Law of Motion: InertiaNewton's Second Law of Motion: Concept of a SystemNewton's Third Law of Motion: Symmetry in ForcesVideo: Newton's LawsNormal, Tension, and Other Examples of ForcesProblem-Solving StrategiesFurther Applications of Newton's Laws of MotionExtended Topic: The Four Basic Forces—An Introduction

Further Applications of Newton's Laws: Friction, Drag, and Elasticity

Uniform Circular Motion and Gravitation

Introduction to Uniform Circular Motion and GravitationRotation Angle and Angular VelocityCentripetal AccelerationCentripetal ForceFictitious Forces and Non-inertial Frames: The Coriolis ForceNewton's Universal Law of GravitationVideo: GravitationSatellites and Kepler's Laws: An Argument for Simplicity

Work, Energy, and Energy Resources

Introduction to Work, Energy, and Energy ResourcesWork: The Scientific DefinitionKinetic Energy and the Work-Energy TheoremGravitational Potential EnergyVideo: Potential and Kinetic EnergyConservative Forces and Potential EnergyNonconservative ForcesConservation of EnergyPowerWork, Energy, and Power in HumansWorld Energy Use

Linear Momentum and Collisions

Rotational Motion and Angular Momentum

Introduction to Rotational Motion and Angular MomentumAngular AccelerationKinematics of Rotational MotionVideo: Rotational MotionDynamics of Rotational Motion: Rotational InertiaRotational Kinetic Energy: Work and Energy RevisitedAngular Momentum and Its ConservationVideo: Angular MomentumCollisions of Extended Bodies in Two DimensionsGyroscopic Effects: Vector Aspects of Angular Momentum

Statics and Torque

Fluid Statics

Introduction to Fluid StaticsWhat Is a Fluid?DensityPressureVariation of Pressure with Depth in a FluidPascal's PrincipleGauge Pressure, Absolute Pressure, and Pressure MeasurementArchimedes' PrincipleVideo: BuoyancyCohesion and Adhesion in Liquids: Surface Tension and Capillary ActionPressures in the Body

Fluid Dynamics and Its Biological and Medical Applications

Introduction to Fluid Dynamics and Biological and Medical ApplicationsFlow Rate and Its Relation to VelocityBernoulli's EquationVideo: Fluid FlowThe Most General Applications of Bernoulli's EquationViscosity and Laminar Flow; Poiseuille's LawThe Onset of TurbulenceMotion of an Object in a Viscous FluidMolecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

Temperature, Kinetic Theory, and the Gas Laws

Heat and Heat Transfer Methods

Thermodynamics

Introduction to ThermodynamicsThe First Law of ThermodynamicsThe First Law of Thermodynamics and Some Simple ProcessesIntroduction to the Second Law of Thermodynamics: Heat Engines and Their EfficiencyCarnot's Perfect Heat Engine: The Second Law of Thermodynamics RestatedApplications of Thermodynamics: Heat Pumps and RefrigeratorsEntropy and the Second Law of Thermodynamics: Disorder and the Unavailability of EnergyStatistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

Oscillatory Motion and Waves

Introduction to Oscillatory Motion and WavesHooke's Law: Stress and Strain RevisitedPeriod and Frequency in OscillationsSimple Harmonic Motion: A Special Periodic MotionVideo: Harmonic MotionThe Simple PendulumEnergy and the Simple Harmonic OscillatorUniform Circular Motion and Simple Harmonic MotionDamped Harmonic MotionForced Oscillations and ResonanceWavesSuperposition and InterferenceEnergy in Waves: Intensity

Physics of Hearing

- Calculate the Reynolds number for an object moving through a fluid.
- Explain whether the Reynolds number indicates laminar or turbulent flow.
- Describe the conditions under which an object has a terminal speed.

A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when you ride a bicycle at 10 m/s in still air, you feel the air in your face exactly as if you were stationary in a 10-m/s wind.) Flow of the stationary fluid around a moving object may be laminar, turbulent, or a combination of the two. Just as with flow in tubes, it is possible to predict when a moving object creates turbulence. We use another form of the Reynolds number *N*′_{R}, defined for an object moving in a fluid to be

### Example 1. Does a Ball Have a Turbulent Wake?

**Strategy**

*N*′_{R}, since all values in it are either given or can be found in tables of density and viscosity.
**Solution**

**Discussion**

**Take-Home Experiment: Don’t Lose Your Marbles**

## Section Summary

### Conceptual Questions

## Glossary

${N′}_{\text{R}}=\frac{\rho vL}{\eta}\text{(object in fluid)}\\$

,where *L* is a characteristic length of the object (a sphere’s diameter, for example), *ρ* the fluid density, *η* its viscosity, and *v* the object’s speed in the fluid. If *N*′_{R} is less than about 1, flow around the object can be laminar, particularly if the object has a smooth shape. The transition to turbulent flow occurs for *N*′_{R} between 1 and about 10, depending on surface roughness and so on. Depending on the surface, there can be a *turbulent wake* behind the object with some laminar flow over its surface. For an *N*′_{R} between 10 and 10^{6}, the flow may be either laminar or turbulent and may oscillate between the two. For *N*′_{R} greater than about 10^{6}, the flow is entirely turbulent, even at the surface of the object. (See Figure 1.) Laminar flow occurs mostly when the objects in the fluid are small, such as raindrops, pollen, and blood cells in plasma.

Calculate the Reynolds number *N*′_{R} for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

We can use

${N′}_{\text{R}}^{}=\frac{\rho \text{vL}}{\eta}\\$

to calculate Substituting values into the equation for *N*′_{R} yields

$\begin{array}{lll}{N′}_{R}^{}& =& \frac{\rho \text{vL}}{\eta }=\frac{\left(1\text{.}\text{29}{\text{ kg/m}}^{3}\right)\left(\text{40.0 m/s}\right)\left(\text{0.0740 m}\right)}{1.81\times {\text{10}}^{-5}1.00 \text{ Pa}\cdot \text{s}}\\ & =& 2.11\times 10^{5}\end{array}\\$

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

One of the consequences of viscosity is a resistance force called * viscous drag **F*_{V} that is exerted on a moving object. This force typically depends on the object’s speed (in contrast with simple friction). Experiments have shown that for laminar flow (*N*′_{R} less than about one) viscous drag is proportional to speed, whereas for *N*′_{R} between about 10 and 10^{6}, viscous drag is proportional to speed squared. (This relationship is a strong dependence and is pertinent to bicycle racing, where even a small headwind causes significantly increased drag on the racer. Cyclists take turns being the leader in the pack for this reason.) For *N*′_{R} greater than 10^{6}, drag increases dramatically and behaves with greater complexity. For laminar flow around a sphere, *F*_{V} is proportional to fluid viscosity *η*, the object’s characteristic size *L*, and its speed *v*. All of which makes sense—the more viscous the fluid and the larger the object, the more drag we expect. Recall Stoke’s law *F*_{S }= 6*πrηv*. For the special case of a small sphere of radius *R* moving slowly in a fluid of viscosity *η*, the drag force *F*_{S} is given by

*F*_{S }= 6*πRηv*.

An interesting consequence of the increase in *F*_{V} with speed is that an object falling through a fluid will not continue to accelerate indefinitely (as it would if we neglect air resistance, for example). Instead, viscous drag increases, slowing acceleration, until a critical speed, called the * terminal speed*, is reached and the acceleration of the object becomes zero. Once this happens, the object continues to fall at constant speed (the terminal speed). This is the case for particles of sand falling in the ocean, cells falling in a centrifuge, and sky divers falling through the air. Figure 2 shows some of the factors that affect terminal speed. There is a viscous drag on the object that depends on the viscosity of the fluid and the size of the object. But there is also a buoyant force that depends on the density of the object relative to the fluid. Terminal speed will be greatest for low-viscosity fluids and objects with high densities and small sizes. Thus a skydiver falls more slowly with outspread limbs than when they are in a pike position—head first with hands at their side and legs together.

By measuring the terminal speed of a slowly moving sphere in a viscous fluid, one can find the viscosity of that fluid (at that temperature). It can be difficult to find small ball bearings around the house, but a small marble will do. Gather two or three fluids (syrup, motor oil, honey, olive oil, etc.) and a thick, tall clear glass or vase. Drop the marble into the center of the fluid and time its fall (after letting it drop a little to reach its terminal speed). Compare your values for the terminal speed and see if they are inversely proportional to the viscosities as listed in Table 1 on Viscosity and Laminar Flow. Does it make a difference if the marble is dropped near the side of the glass?

Knowledge of terminal speed is useful for estimating sedimentation rates of small particles. We know from watching mud settle out of dirty water that sedimentation is usually a slow process. Centrifuges are used to speed sedimentation by creating accelerated frames in which gravitational acceleration is replaced by centripetal acceleration, which can be much greater, increasing the terminal speed.

- When an object moves in a fluid, there is a different form of the Reynolds number ${N′}_{\text{R}}^{}=\frac{\rho \text{vL}}{\eta }\text{(object in fluid)}\\$, which indicates whether flow is laminar or turbulent.
- For
*N*′_{R}less than about one, flow is laminar. - For
*N*′_{R}greater than 10^{6}, flow is entirely turbulent.

1. What direction will a helium balloon move inside a car that is slowing down—toward the front or back? Explain your answer.

2. Will identical raindrops fall more rapidly in 5º C air or 25º C air, neglecting any differences in air density? Explain your answer.

3. If you took two marbles of different sizes, what would you expect to observe about the relative magnitudes of their terminal velocities?

- viscous drag:
- a resistance force exerted on a moving object, with a nontrivial dependence on velocity

- terminal speed:
- the speed at which the viscous drag of an object falling in a viscous fluid is equal to the other forces acting on the object (such as gravity), so that the acceleration of the object is zero