- Accounting
- Aerospace Engineering
- Anatomy
- Anthropology
- Arts & Humanities
- Astronomy
- Biology
- Business
- Chemistry
- Civil Engineering
- Computer Science
- Communications
- Economics
- Electrical Engineering
- English
- Finance
- Geography
- Geology
- Health Science
- History
- Industrial Engineering
- Information Systems
- Law
- Linguistics
- Management
- Marketing
- Material Science
- Mathematics
- Mechanical Engineering
- Medicine
- Nursing
- Philosophy
- Physics
- Political Science
- Psychology
- Religion
- Sociology
- Statistics

HomeStudy GuidesPhysics

Menu

The Nature of Science and Physics

Kinematics

Introduction to One-Dimensional KinematicsDisplacementVectors, Scalars, and Coordinate SystemsTime, Velocity, and SpeedVideo: One-Dimensional KinematicsAccelerationMotion Equations for Constant Acceleration in One DimensionProblem-Solving Basics for One-Dimensional KinematicsFalling ObjectsGraphical Analysis of One-Dimensional Motion

Two-Dimensional Kinematics

Dynamics: Force and Newton's Laws of Motion

Introduction to Dynamics: Newton's Laws of MotionDevelopment of Force ConceptNewton's First Law of Motion: InertiaNewton's Second Law of Motion: Concept of a SystemNewton's Third Law of Motion: Symmetry in ForcesVideo: Newton's LawsNormal, Tension, and Other Examples of ForcesProblem-Solving StrategiesFurther Applications of Newton's Laws of MotionExtended Topic: The Four Basic Forces—An Introduction

Further Applications of Newton's Laws: Friction, Drag, and Elasticity

Uniform Circular Motion and Gravitation

Introduction to Uniform Circular Motion and GravitationRotation Angle and Angular VelocityCentripetal AccelerationCentripetal ForceFictitious Forces and Non-inertial Frames: The Coriolis ForceNewton's Universal Law of GravitationVideo: GravitationSatellites and Kepler's Laws: An Argument for Simplicity

Work, Energy, and Energy Resources

Introduction to Work, Energy, and Energy ResourcesWork: The Scientific DefinitionKinetic Energy and the Work-Energy TheoremGravitational Potential EnergyVideo: Potential and Kinetic EnergyConservative Forces and Potential EnergyNonconservative ForcesConservation of EnergyPowerWork, Energy, and Power in HumansWorld Energy Use

Linear Momentum and Collisions

Rotational Motion and Angular Momentum

Introduction to Rotational Motion and Angular MomentumAngular AccelerationKinematics of Rotational MotionVideo: Rotational MotionDynamics of Rotational Motion: Rotational InertiaRotational Kinetic Energy: Work and Energy RevisitedAngular Momentum and Its ConservationVideo: Angular MomentumCollisions of Extended Bodies in Two DimensionsGyroscopic Effects: Vector Aspects of Angular Momentum

Statics and Torque

Fluid Statics

Introduction to Fluid StaticsWhat Is a Fluid?DensityPressureVariation of Pressure with Depth in a FluidPascal's PrincipleGauge Pressure, Absolute Pressure, and Pressure MeasurementArchimedes' PrincipleVideo: BuoyancyCohesion and Adhesion in Liquids: Surface Tension and Capillary ActionPressures in the Body

Fluid Dynamics and Its Biological and Medical Applications

Introduction to Fluid Dynamics and Biological and Medical ApplicationsFlow Rate and Its Relation to VelocityBernoulli's EquationVideo: Fluid FlowThe Most General Applications of Bernoulli's EquationViscosity and Laminar Flow; Poiseuille's LawThe Onset of TurbulenceMotion of an Object in a Viscous FluidMolecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

Temperature, Kinetic Theory, and the Gas Laws

Heat and Heat Transfer Methods

Thermodynamics

Introduction to ThermodynamicsThe First Law of ThermodynamicsThe First Law of Thermodynamics and Some Simple ProcessesIntroduction to the Second Law of Thermodynamics: Heat Engines and Their EfficiencyCarnot's Perfect Heat Engine: The Second Law of Thermodynamics RestatedApplications of Thermodynamics: Heat Pumps and RefrigeratorsEntropy and the Second Law of Thermodynamics: Disorder and the Unavailability of EnergyStatistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

Oscillatory Motion and Waves

Introduction to Oscillatory Motion and WavesHooke's Law: Stress and Strain RevisitedPeriod and Frequency in OscillationsSimple Harmonic Motion: A Special Periodic MotionVideo: Harmonic MotionThe Simple PendulumEnergy and the Simple Harmonic OscillatorUniform Circular Motion and Simple Harmonic MotionDamped Harmonic MotionForced Oscillations and ResonanceWavesSuperposition and InterferenceEnergy in Waves: Intensity

Physics of Hearing

- Observe the vibrations of a guitar string.
- Determine the frequency of oscillations.

When you pluck a guitar string, the resulting sound has a steady tone and lasts a long time. Each successive vibration of the string takes the same time as the previous one. We define

$f=\frac{1}{T}\\$

.
The SI unit for frequency is the $\displaystyle1\text{ Hz}=1\frac{\text{cycle}}{\text{sec}}\text{ or }1\text{ Hz}=\frac{1}{\text{s}}\\$

A cycle is one complete oscillation. Note that a vibration can be a single or multiple event, whereas oscillations are usually repetitive for a significant number of cycles.- A medical imaging device produces ultrasound by oscillating with a period of 0.400 µs. What is the frequency of this oscillation?
- The frequency of middle C on a typical musical instrument is 264 Hz. What is the time for one complete oscillation?

$f=\frac{1}{T}\\$

:$\displaystyle{f}=\frac{1}{T}=\frac{1}{0.400\times10^{-6}\text{ s}}\\$

Solve to find $f=\frac{1}{T}\\$

.
Solve for $T=\frac{1}{f}\\$

.
Substitute the given value for the frequency into the resulting expression:$\displaystyle{T}=\frac{1}{f}=\frac{1}{264\text{ Hz}}=\frac{1}{264\text{ cycles/s}}=3.79\times10^{-3}\text{ s}=3.79\text{ ms}\\$

- Periodic motion is a repetitious oscillation.
- The time for one oscillation is the period
*T*. - The number of oscillations per unit time is the frequency
*f*. - These quantities are related by $f=\frac{1}{T}\\$.

- What is the period of 60.0 Hz electrical power?
- If your heart rate is 150 beats per minute during strenuous exercise, what is the time per beat in units of seconds?
- Find the frequency of a tuning fork that takes 2.50 × 10
^{−3}s to complete one oscillation. - A stroboscope is set to flash every 8.00 × 10
^{−5}s. What is the frequency of the flashes? - A tire has a tread pattern with a crevice every 2.00 cm. Each crevice makes a single vibration as the tire moves. What is the frequency of these vibrations if the car moves at 30.0 m/s?
**Engineering Application.**Each piston of an engine makes a sharp sound every other revolution of the engine. (a) How fast is a race car going if its eight-cylinder engine emits a sound of frequency 750 Hz, given that the engine makes 2000 revolutions per kilometer? (b) At how many revolutions per minute is the engine rotating?

- 16.7 ms
- 0.400 s/beats
- 400 Hz
- 12,500 Hz
- 1.50 kHz
- (a) 93.8 m/s; (b) 11.3 × 10
^{3}rev/min