- Accounting
- Aerospace Engineering
- Anatomy
- Anthropology
- Arts & Humanities
- Astronomy
- Biology
- Business
- Chemistry
- Civil Engineering
- Computer Science
- Communications
- Economics
- Electrical Engineering
- English
- Finance
- Geography
- Geology
- Health Science
- History
- Industrial Engineering
- Information Systems
- Law
- Linguistics
- Management
- Marketing
- Material Science
- Mathematics
- Mechanical Engineering
- Medicine
- Nursing
- Philosophy
- Physics
- Political Science
- Psychology
- Religion
- Sociology
- Statistics

HomeStudy GuidesPhysics

Menu

The Nature of Science and Physics

Kinematics

Introduction to One-Dimensional KinematicsDisplacementVectors, Scalars, and Coordinate SystemsTime, Velocity, and SpeedVideo: One-Dimensional KinematicsAccelerationMotion Equations for Constant Acceleration in One DimensionProblem-Solving Basics for One-Dimensional KinematicsFalling ObjectsGraphical Analysis of One-Dimensional Motion

Two-Dimensional Kinematics

Dynamics: Force and Newton's Laws of Motion

Introduction to Dynamics: Newton's Laws of MotionDevelopment of Force ConceptNewton's First Law of Motion: InertiaNewton's Second Law of Motion: Concept of a SystemNewton's Third Law of Motion: Symmetry in ForcesVideo: Newton's LawsNormal, Tension, and Other Examples of ForcesProblem-Solving StrategiesFurther Applications of Newton's Laws of MotionExtended Topic: The Four Basic Forces—An Introduction

Further Applications of Newton's Laws: Friction, Drag, and Elasticity

Uniform Circular Motion and Gravitation

Introduction to Uniform Circular Motion and GravitationRotation Angle and Angular VelocityCentripetal AccelerationCentripetal ForceFictitious Forces and Non-inertial Frames: The Coriolis ForceNewton's Universal Law of GravitationVideo: GravitationSatellites and Kepler's Laws: An Argument for Simplicity

Work, Energy, and Energy Resources

Introduction to Work, Energy, and Energy ResourcesWork: The Scientific DefinitionKinetic Energy and the Work-Energy TheoremGravitational Potential EnergyVideo: Potential and Kinetic EnergyConservative Forces and Potential EnergyNonconservative ForcesConservation of EnergyPowerWork, Energy, and Power in HumansWorld Energy Use

Linear Momentum and Collisions

Rotational Motion and Angular Momentum

Introduction to Rotational Motion and Angular MomentumAngular AccelerationKinematics of Rotational MotionVideo: Rotational MotionDynamics of Rotational Motion: Rotational InertiaRotational Kinetic Energy: Work and Energy RevisitedAngular Momentum and Its ConservationVideo: Angular MomentumCollisions of Extended Bodies in Two DimensionsGyroscopic Effects: Vector Aspects of Angular Momentum

Statics and Torque

Fluid Statics

Introduction to Fluid StaticsWhat Is a Fluid?DensityPressureVariation of Pressure with Depth in a FluidPascal's PrincipleGauge Pressure, Absolute Pressure, and Pressure MeasurementArchimedes' PrincipleVideo: BuoyancyCohesion and Adhesion in Liquids: Surface Tension and Capillary ActionPressures in the Body

Fluid Dynamics and Its Biological and Medical Applications

Introduction to Fluid Dynamics and Biological and Medical ApplicationsFlow Rate and Its Relation to VelocityBernoulli's EquationVideo: Fluid FlowThe Most General Applications of Bernoulli's EquationViscosity and Laminar Flow; Poiseuille's LawThe Onset of TurbulenceMotion of an Object in a Viscous FluidMolecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

Temperature, Kinetic Theory, and the Gas Laws

Heat and Heat Transfer Methods

Thermodynamics

Introduction to ThermodynamicsThe First Law of ThermodynamicsThe First Law of Thermodynamics and Some Simple ProcessesIntroduction to the Second Law of Thermodynamics: Heat Engines and Their EfficiencyCarnot's Perfect Heat Engine: The Second Law of Thermodynamics RestatedApplications of Thermodynamics: Heat Pumps and RefrigeratorsEntropy and the Second Law of Thermodynamics: Disorder and the Unavailability of EnergyStatistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation

Oscillatory Motion and Waves

Introduction to Oscillatory Motion and WavesHooke's Law: Stress and Strain RevisitedPeriod and Frequency in OscillationsSimple Harmonic Motion: A Special Periodic MotionVideo: Harmonic MotionThe Simple PendulumEnergy and the Simple Harmonic OscillatorUniform Circular Motion and Simple Harmonic MotionDamped Harmonic MotionForced Oscillations and ResonanceWavesSuperposition and InterferenceEnergy in Waves: Intensity

Physics of Hearing

- Describe the principle of conservation of momentum.
- Derive an expression for the conservation of momentum.
- Explain conservation of momentum with examples.
- Explain the principle of conservation of momentum as it relates to atomic and subatomic particles.

The answer to this question entails considering a sufficiently large system. It is always possible to find a larger system in which total momentum is constant, even if momentum changes for components of the system. If a football player runs into the goalpost in the end zone, there will be a force on him that causes him to bounce backward. However, the Earth also recoils —conserving momentum—because of the force applied to it through the goalpost. Because Earth is many orders of magnitude more massive than the player, its recoil is immeasurably small and can be neglected in any practical sense, but it is real nevertheless.

Consider what happens if the masses of two colliding objects are more similar than the masses of a football player and Earth—for example, one car bumping into another, as shown in Figure 1. Both cars are coasting in the same direction when the lead car (labeled

Using the definition of impulse, the change in momentum of car 1 is given by Δ

Similarly, the change in momentum of car 2 is Δ

Thus, the changes in momentum are equal and opposite, and Δ

Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,

This result—that momentum is conserved—has validity far beyond the preceding one-dimensional case. It can be similarly shown that total momentum is conserved for any isolated system, with any number of objects in it. In equation form, the

$\begin{array}{lll}\mathbf{p}_{\text{tot}}&=&\text{constant}\\\mathbf{p}_{\text{tot}}&=&\mathbf{p}\prime_{\text{tot}}(\text{isolated system})\end{array}\\$

$\mathbf{F}_{\text{net}}=\frac{\Delta\mathbf{p}_{\text{tot}}}{\Delta{t}}\\$

. For an isolated system, (FWe have noted that the three length dimensions in nature—

The conservation of momentum principle can be applied to systems as different as a comet striking Earth and a gas containing huge numbers of atoms and molecules. Conservation of momentum is violated only when the net external force is not zero. But another larger system can always be considered in which momentum is conserved by simply including the source of the external force. For example, in the collision of two cars considered above, the two-car system conserves momentum while each one-car system does not.

Some aquatic animals such as jellyfish move around based on the principles of conservation of momentum. A jellyfish fills its umbrella section with water and then pushes the water out resulting in motion in the opposite direction to that of the jet of water. Squids propel themselves in a similar manner but, in contrast with jellyfish, are able to control the direction in which they move by aiming their nozzle forward or backward. Typical squids can move at speeds of 8 to 12 km/h.

The ballistocardiograph (BCG) was a diagnostic tool used in the second half of the 20th century to study the strength of the heart. About once a second, your heart beats, forcing blood into the aorta. A force in the opposite direction is exerted on the rest of your body (recall Newton’s third law). A ballistocardiograph is a device that can measure this reaction force. This measurement is done by using a sensor (resting on the person) or by using a moving table suspended from the ceiling. This technique can gather information on the strength of the heart beat and the volume of blood passing from the heart. However, the electrocardiogram (ECG or EKG) and the echocardiogram (cardiac ECHO or ECHO; a technique that uses ultrasound to see an image of the heart) are more widely used in the practice of cardiology.

On the small scale, we find that particles and their properties are invisible to the naked eye but can be measured with our instruments, and models of these subatomic particles can be constructed to describe the results. Momentum is found to be a property of all subatomic particles including massless particles such as photons that compose light. Momentum being a property of particles hints that momentum may have an identity beyond the description of an object’s mass multiplied by the object’s velocity. Indeed, momentum relates to wave properties and plays a fundamental role in what measurements are taken and how we take these measurements. Furthermore, we find that the conservation of momentum principle is valid when considering systems of particles. We use this principle to analyze the masses and other properties of previously undetected particles, such as the nucleus of an atom and the existence of quarks that make up particles of nuclei. Figure 3 below illustrates how a particle scattering backward from another implies that its target is massive and dense. Experiments seeking evidence that

- The conservation of momentum principle is written
**p**_{tot}= constant or**p**_{tot}=**p**′_{tot}(isolated system),**p**_{tot}is the initial total momentum and**p**′_{tot}is the total momentum some time later. - An isolated system is defined to be one for which the net external force is zero (
**F**_{net}= 0). - During projectile motion and where air resistance is negligible, momentum is conserved in the horizontal direction because horizontal forces are zero.
- Conservation of momentum applies only when the net external force is zero.
- The conservation of momentum principle is valid when considering systems of particles.

**Professional Application.**If you dive into water, you reach greater depths than if you do a belly flop. Explain this difference in depth using the concept of conservation of energy. Explain this difference in depth using what you have learned in this chapter.- Under what circumstances is momentum conserved?
- Can momentum be conserved for a system if there are external forces acting on the system? If so, under what conditions? If not, why not?
- Momentum for a system can be conserved in one direction while not being conserved in another. What is the angle between the directions? Give an example.
**Professional Application.**Explain in terms of momentum and Newton’s laws how a car’s air resistance is due in part to the fact that it pushes air in its direction of motion.- Can objects in a system have momentum while the momentum of the system is zero? Explain your answer.
- Must the total energy of a system be conserved whenever its momentum is conserved? Explain why or why not.

**Professional Application.**Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, the first having a mass of 150,000 kg and a velocity of 0.300 m/s, and the second having a mass of 110,000 kg and a velocity of −0.120 m/s. (The minus indicates direction of motion.) What is their final velocity?- Suppose a clay model of a koala bear has a mass of 0.200 kg and slides on ice at a speed of 0.750 m/s. It runs into another clay model, which is initially motionless and has a mass of 0.350 kg. Both being soft clay, they naturally stick together. What is their final velocity?
**Professional Application.**Consider the following question: A car moving at 10 m/s crashes into a tree and stops in 0.26 s. Calculate the force the seatbelt exerts on a passenger in the car to bring him to a halt. The mass of the passenger is 70 kg. Would the answer to this question be different if the car with the 70-kg passenger had collided with a car that has a mass equal to and is traveling in the opposite direction and at the same speed? Explain your answer.- What is the velocity of a 900-kg car initially moving at 30.0 m/s, just after it hits a 150-kg deer initially running at 12.0 m/s in the same direction? Assume the deer remains on the car.
- A 1.80-kg falcon catches a 0.650-kg dove from behind in midair. What is their velocity after impact if the falcon’s velocity is initially 28.0 m/s and the dove’s velocity is 7.00 m/s in the same direction?

3. In a collision with an identical car, momentum is conserved. Afterwards

5. 22.4 m/s in the same direction as the original motion